Primary Data & Secondary Data in Carbon Emissions Measurements

Explore primary data and secondary data in measuring carbon emissions for businesses. See examples of each and understand their advantages and challenges.
Updated on
May 7, 2024
Primary Data & Secondary Data in Carbon Emissions Measurements
Table of Contents

Understanding and managing carbon footprints stand as pivotal actions for companies worldwide. A critical aspect of this process involves collecting and analyzing both primary and secondary data, each offering unique insights and bearing distinctive implications for carbon management strategies. This blog dives into the nuances of these data types, shedding light on their significance, methodologies for collection, and their respective roles in steering companies toward achieving net-zero targets.

Primary Data

What is primary data in carbon emissions measurement?

In carbon emissions measurement, primary data involves collecting information straight from the activities that occur within a company's value chain. This data is considered the gold standard because it is obtained directly from the source, offering undiluted insights into the business's operational impact on the environment. Primary data's direct relationship with a company's specific processes makes it indispensable for a precise assessment of carbon emissions, facilitating targeted strategies for reduction efforts.

What are examples or sources of primary data?

Primary data's richness comes from its variety, encompassing a wide array of operational activities:

  • Production Processes: Direct emissions data from manufacturing or operational processes.
  • Sales Transactions: Information on the sale of goods and services that can be correlated with emissions.
  • Customer Interactions: Data gathered from consumer usage and feedback that can inform on product lifecycle emissions.
  • Utility Bills and Meter Readings: Direct energy and water usage measurements, among others.

These examples underscore the depth and breadth of primary data, highlighting its integral role in carbon emissions assessment.

How do you collect primary data?

Collecting primary data is a multifaceted endeavour that necessitates a strategic approach. A widely used technique involves leveraging various tools and methodologies to capture data accurately:

  • Engagement with Suppliers: Gathering energy data from suppliers and partners is crucial for understanding Scope 3 (indirect) emissions, which often account for a significant portion of a company's carbon footprint.
  • Purchase Records: Tracking the procurement of goods and services can offer insights into supply chain emissions.
  • Meter Readings and Utility Bills: Provide direct evidence of energy consumption, water use, and other utility data.
  • Engineering Models and Direct Monitoring: These methods allow for the detailed mapping and measurement of emissions from specific processes.

What if you can’t get primary data to include in your carbon measurement?

In some instances, collecting primary data may not be feasible. In such cases, companies should not halt their carbon measurement efforts. Instead, leveraging secondary data becomes a viable alternative. 

Secondary data from internationally recognized databases and publications can fill in the gaps. When the quality or specificity of secondary data falls short, proxy data—data from similar activities—can be customized or scaled to match the company’s operations better. This pragmatic approach ensures that companies can still make informed decisions toward their sustainability goals.

What are the advantages of primary data?

The utilization of primary data in carbon emissions measurement comes with significant advantages, including:

  • Specificity to the Business: It offers an unrivalled level of detail and relevance to the company’s own operations.
  • Benchmarking Capabilities: Enables the tracking of emissions over time and the assessment of reduction strategies’ effectiveness.
  • Supplier Comparison: This tool facilitates accurate comparisons of GHG emissions between suppliers within the same value chain, aiding in sustainable supplier selection.
  • Progress Tracking: Essential for setting and pursuing net-zero targets, as it allows businesses to measure and adapt their strategies based on accurate data.

What are the disadvantages of primary data?

Despite its benefits, the collection and application of primary data are not without challenges:

  • Cost and Resource Intensity: The processes involved in gathering primary data can be costly and time-consuming.
  • Data Verification Issues: Ensuring the accuracy and reliability of data, especially from external partners, can present difficulties.
  • Complexity in Data Collection: The need for specialized tools or methodologies can complicate the process, requiring expertise that not all companies may have in-house.

Primary data is the cornerstone of accurate and effective carbon emissions measurement. Its direct correlation with a company's activities provides unparalleled insights into the environmental impact of operations, making it a powerful tool for sustainability. However, it requires a strategic approach to collection, analysis, and application, balanced with an understanding its limitations and the intelligent use of secondary data when necessary. 

For companies aspiring to truthfully assess and reduce their carbon footprint, mastering the nuances of primary data collection and its integration into broader sustainability efforts is key.

Discover how Arbor can streamline your sustainability efforts and provide the tools to accurately measure and reduce your carbon footprint. Talk to our sales team today for a bespoke approach to becoming a net-zero company.

Secondary Data

What is secondary data in carbon emissions measurement?

Secondary data is a complementary data source. This data type is not gleaned directly from a company's specific actions or processes; instead, it is sourced from external datasets and research not intrinsically tied to the company's operations.

Secondary data serves as an invaluable resource, especially when direct, primary data collection is not feasible. It provides insights and benchmarks from broader industry contexts. Its incorporation into carbon measurement strategies allows for a more comprehensive understanding of a company’s environmental footprint, leveraging established knowledge and data points to inform and guide emissions reduction efforts.

What are examples or sources of secondary data?

Secondary data casts a wide net, capturing a diverse range of information crucial for carbon footprint analysis:

  • Industry Benchmarks: Offering a comparative analysis of average sector-specific emissions.
  • Published Research and Market Analysis: Providing insights into trends, innovations, and efficiency standards.
  • Life Cycle Databases: Supplying quantified environmental impacts across product life cycles.
  • Scientific Papers and Statistics: Contributing academic rigour and validated data to the emissions factors.

These sources act as the backbone for secondary data, enriching carbon emissions assessments with a depth of perspective and benchmarking capabilities that would be challenging to achieve through primary data alone.

Where does Arbor get secondary data from?

Arbor's accurate and comprehensive carbon footprint assessments are derived from our strategic sourcing of secondary data. By tapping into multiple internationally recognized sources, Arbor ensures that its analyses are both robust and reliable. This includes an array of databases and publications known for their authority and accuracy in the environmental domain:

  • Trade Data and Energy Grid Information: Enabling a macro-view of emissions trends and dependencies.
  • LCA Databases (e.g., Eco-invent, GABI): Providing detailed insights into the environmental impacts of various materials and processes.
  • Transportation Routes Data: Offering a glimpse into emissions stemming from logistics and supply chain activities.
  • Arbor’s Proprietary Emission Factor Data and LCA Studies: Further refining the understanding of specific emissions factors.

This curated selection of data sources empowers Arbor to give businesses the insights needed to navigate their sustainability journeys effectively.

What are the advantages of secondary data?

The strategic use of secondary data in carbon emissions measurement brings forth several distinct advantages:

  • Accessibility: It enables analysis even when collecting primary data is challenging.
  • Cost-Effectiveness: Particularly beneficial for covering broad areas of a company’s operations without the need for extensive primary data collection.
  • Benchmarking and Hotspot Identification: Facilitates understanding the broader emissions landscape and identifying areas for targeted improvement.
  • Scope 1, 2, and 3 Emissions Insights: This tool helps companies dissect their total emissions footprint, enabling strategic planning for reduction across all scopes.

These benefits make secondary data a crucial element in the toolkit for companies aiming to understand and mitigate their environmental impact.

What are the disadvantages of secondary data?

However, reliance on secondary data is not without its challenges:

  • Potential for Misalignment: It may not accurately reflect the unique aspects of a company’s operations or capture the nuances of its specific emission reduction initiatives.
  • Comparability Issues: Due to data granularity and context variances, it may be difficult to directly compare GHG emissions between suppliers in the same value chain.
  • Limitation on Progress Monitoring: The generalized nature of the data might pose hurdles in tracking toward net-zero targets.

Despite these considerations, secondary data remains an indispensable resource in the environmental analyst's arsenal, providing valuable insights that enhance and complement the primary data collected directly by companies.

Understanding the strengths and limitations of secondary data is essential for companies embarking on their sustainability journeys. By leveraging this data, in conjunction with primary data wherever possible, businesses can gain a more comprehensive view of their carbon footprint, informing more effective strategies for reduction and management. Use Arbor’s platform to access key secondary data to supplement your carbon emissions measurement!

What is the difference between primary and secondary data?

Primary Data vs Secondary Data Comparison, made by Arbor.eco

When comparing primary and secondary data, both data types serve distinct, complementary roles in a company's sustainability efforts, each with its own set of advantages and limitations.

Primary Data is gathered directly from a company's operations, providing specific, undiluted insights into its environmental impact. Its direct sourcing from operational activities such as production processes, sales transactions, and utility usage makes it invaluable for precise carbon footprint assessments and targeted reduction strategies. 

Its accuracy and specificity enable companies to perform detailed benchmarking, track emissions reduction progress effectively, and make accurate GHG comparisons between suppliers in the same value chain. However, collecting and applying primary data can be resource-intensive and costly, and it may involve complexities in data verification and collection.

Conversely, secondary data is not directly collected from a company's specific actions or processes but sourced from external datasets and research. This data complements primary data by providing broader context and industry benchmarks when direct data collection is not feasible. Examples include industry benchmarks, life cycle databases, and scientific papers, which enrich carbon emissions assessments with a broader perspective.

Secondary data's advantages lie in its accessibility and cost-effectiveness, allowing companies to cover broad operational areas and understand their emissions in relation to the wider industry. However, it may not always accurately reflect a company's unique operations or the nuances of its emission reduction initiatives, potentially complicating direct comparisons and tracking toward net-zero targets.

Primary data offers a superior level of detail specific to a company's operations, making it crucial for accurate emissions measurement and management. While potentially lacking in specificity, secondary data provides essential contextual information, enabling companies to position their efforts within the broader environmental landscape. Together, they form a comprehensive data foundation for companies to effectively assess, manage, and reduce their carbon footprint. Utilizing platforms like Arbor enables businesses to seamlessly integrate both data types into their sustainability strategies, ensuring a robust approach to achieving their environmental goals.

Summary

This deep dive into the intricacies of primary and secondary data in carbon emissions measurement highlights their importance for companies on the path to sustainability. Primary data, sourced directly from a company’s operational activities, provides untainted insights essential for precise carbon footprint assessments and formulation of targeted reduction strategies. It allows companies to benchmark, track emission reductions accurately, and compare GHG emissions effectively. However, it comes with challenges, including the cost, time, and complexity of collection and verification. 

On the flip side, secondary data serves as a crucial complement, especially when primary data is inaccessible. It offers broader industry insights and benchmarks from external sources. Although it may lack the specificity of primary data and pose potential alignment issues, its accessibility and cost-effectiveness make it invaluable for understanding and mitigating environmental impacts. 

Primary and secondary data furnish a rich, multifaceted view of a company's carbon footprint, enabling informed, strategic decisions toward achieving net-zero goals through platforms like Arbor. This blended approach underscores the necessity of leveraging both data types for a holistic sustainability strategy.

Talk to Arbor’s carbon experts to supplement our industry-leading secondary data to fill your data gaps.

Thanks for reading!
Primary Data & Secondary Data in Carbon Emissions Measurements